THE STRUCTURE OF CYCLOOCTATIN, A NEW INHIBITOR OF LYSOPHOSPHOLIPASE

Sir:

In the preceding paper¹, we have described the taxonomy, isolation, physico-chemical properties and biological activities of cyclooctatin (Fig. 1), a novel inhibitor of lysophospholipase (Lyso-PL). In this paper, we describe the structure determination of cyclooctatin.

The molecular weight and formula of cyclooctatin were elucidated as $C_{20}H_{34}O_3$ (MW 322.49) by the FD-MS peak at m/z 322 (M⁺), elemental analysis (found: C 74.09, H 10.63; calcd for $C_{20}H_{34}O_3$: C 74.45, H 10.63) and ¹H and ¹³C NMR spectra (Table 1). UV spectrum showed the end absorption in EtOH. IR spectrum (KBr) showed the presence of hydroxy group (3430 cm⁻¹). ¹³C NMR spectrum revealed two signals of sp^2 carbon (δ_C 119.1 and 154.5 ppm) and eighteen signals of sp^3 carbon in which three signals (C-3, C-4 and C-11) appeared in lower field (δ_C 75.7, 78.4 and 63.4 ppm) indicating the oxygen-bearing carbons.

In the ¹H-¹H COSY spectrum and proton decoupling NMR experiments, a *vicinal*-spin spin coupling between the signals at $\delta_{\rm H}$ 1.91, 2.74 (5-H₂) ppm and the signal at $\delta_{\rm H}$ 5.28 (6-H) ppm was observed, and *vicinal*-spin spin couplings between the signals at $\delta_{\rm H}$ 1.42, 1.59 (9-H₂) ppm and the signals at $\delta_{\rm H}$ 1.38, 1.56 (8-H₂) ppm, $\delta_{\rm H}$ 1.38, 1.56 (8-H₂) and 2.30 (7-H) ppm, $\delta_{\rm H}$ 2.30 (7-H) and 1.83 (13-H) ppm, $\delta_{\rm H}$ 1.83 (13-H) and 0.79 (15-H₃) ppm, $\delta_{\rm H}$ 1.83 (13-H) and 0.96 (16-H₃) ppm were also observed. Furthermore, *vicinal*-spin spin couplings indicated the linkage of C-10 to C-11 in the same fashion as described above. From the above results, the presence of three partial structures (Fig. 2A, B and C) were revealed.

As shown in Fig. 3, in the HMBC (heteronuclear multiple bond connectivity) spectrum, partial structures A, B and C could be connected as follows. The olefinic proton at $\delta_{\rm H}$ 5.28 (6-H) ppm coupled to two carbons at $\delta_{\rm C}$ 55.1 (C-7) and 45.9 (C-9a) ppm, and the methine proton at $\delta_{\rm H}$ 2.30 (7-H) ppm coupled to the carbon at $\delta_{\rm C}$ 154.5 (C-6a) ppm, indicating the connectivity of partial structures A and B. The methyl protons at $\delta_{\rm L}$ 154.5 (C-6a), 46.6 (C-9), 45.9 (C-9a) and 45.6 (C-10) showing the connectivity of partial structures B and C. The methyl protons at $\delta_{\rm L}$ 154.5 (C-6a) and 45.6 (C-10) showing the connectivity of partial structures B and C.

 $\delta_{\rm H}$ 1.33 (12-H₃) ppm showed cross peaks with the carbon signals at $\delta_{\rm C}$ 58.0 (C-3a), 78.4 (C-4) and 42.2 (C-5) ppm indicating the connectivity of partial structures A and C. Correlation between the methylene protons at $\delta_{\rm H}$ 3.55, 3.66 (11-H₂) ppm and the carbon at $\delta_{\rm C}$ 35.8 (C-10a) ppm were also observed.

From the above results, the structure of cyclooctatin was determined to be 1,2,3,3a,4,5,7,8,9,-9a,10,10a-dodecahydro-3,4-dihydroxy-1-hydroxy-

Fig. 1. Structure of cyclooctatin.

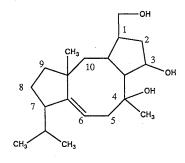
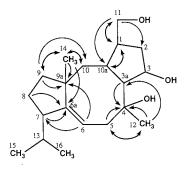


Table 1. ¹³C and ¹H NMR data of cyclooctatin in CD₃OD.

Carbon	$\delta_{ m C} \ m ppm$ (100 MHz)	$\delta_{\rm H} \text{ ppm}$ (J in Hz, 400 MHz) 2.61 (m)			
1	44.9 (d)				
2	39.7 (t)	1.38 (dt, 3.4, 12.6),			
		1.71 (br dd, 12.6, 5.0)			
3	75.7 (d)	4.44 (br dd, 3.4, 5.0)			
3a	58.0 (d)	1.97 (t, 5.0)			
4	78.4 (s)				
5	42.2 (t)	1.91 (dd, 12.8, 7.4),			
		2.74 (br t, 11.6)			
6	119.1 (d)	5.28 (ddd, 10.8, 7.4, 2.2)			
6a	154.5 (s)				
7	55.1 (d)	2.30 (m)			
8	24.3 (t)	1.38 (m),			
		1.56 (m)			
9	46.6 (t)	1.42 (m),			
		1.59 (m)			
9a	45.9 (s)				
10	45.6 (t)	1.20 (t, 12.8),			
		1.68 (br d, 12.8)			
10a	35.8 (d)	2.56 (m)			
11	63.4 (t)	3.55 (dd, 10.8, 6.8),			
	.,	3.66 (dd, 10.8, 7.4)			
12	26.7 (q)	1.33 (br s)			
13	30.2 (d)	1.83 (m)			
14	25.2 (q)	1.25 (s)			
15	17.8 (q)	0.79 (d, 6.6)			
16	22.5 (q)	0.96 (d, 6.6)			


Fig. 2. Partial structures of cyclooctatin.

A
$$-\frac{5}{CH_2} - \frac{6}{CH} = C - \frac{\delta_{\rm H}}{2.74}$$

 $\delta_{\rm H} = \frac{1.91}{2.74} - \frac{5.28}{2.74}$
 $\delta_{\rm C} = 42.2 - 119.1 - 154.5$

$$B = \frac{9}{-CH_2} - \frac{8}{CH_2} - \frac{7 | 13|}{-CH_1 - CH_1 - CH_1} - \frac{15}{CH_3} = \frac{8}{1.59} - \frac{7 | 13|}{1.59} - \frac{15}{1.56} = \frac{1.42}{1.59} - \frac{1.38}{1.56} - \frac{1.42}{1.58} - \frac{1.38}{55.1} - \frac{1.30.2}{30.2} - \frac{17.8}{17.8} = \frac{16}{2} - \frac{16}{$$

С		-10 -CH ₂	^{10a} Ⅰ —CH	_{-3а} Сн-	3∣ –СН -	- ² CH ₂	1 Сн _	¹¹ −CH₂	_
		$\begin{array}{c} 1.20 \\ 1.68 \end{array}$						3.55 3.66	
	$\delta_{\rm C}$	45.6	35.8	58.0	75.7	39.7	44.9	63.4	

Fig. 3. The key ¹H-¹³C correlation by HMBC experiment.

methyl-4,9a-dimethyl-7-(1-methylethyl)-dicyclopenta[a,d]cyclooctene. The absolute configuration remains to be determined.

Cyclooctatin is closely related to ophiobolins (A, B, C, D, F, G and H)²⁾ and fusicoccin $A^{3)}$. Although

these metabolites belong to the class of sesterterpenoid, only cyclooctatin is a diterpenoid compound. Moreover, cyclooctatin is produced by actinomycetes and the others are produced by fungi. Terpentecin⁴⁾, a diterpenoid antibiotic from actinomycetes, is not so similar to cyclooctatin.

> Takayuki Aoyama[†] Hiroshi Naganawa[†] Yasuhiko Muraoka[†] Takaaki Aoyagi^{†,††} Tomio Takeuchi[†]

[†]Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

^{††}Showa College of Pharmaceutical Sciences Machida-city, Tokyo 194, Japan

(Received May 13, 1992)

References

- AOYAGI, T.; T. AOYAMA, F. KOJIMA, S. HATTORI, Y. HONMA, M. HAMADA & T. TAKEUCHI: Cyclooctatin, a new inhibitor of lysophospholipase, produced by *Streptomyces melanosporofaciens* MI614-43F2. Taxonomy, production, isolation, physico-chemical properties and biological activities. J. Antibiotics 45: 1587~1591, 1992
- 2) CUTLER, H. G.; F. G. CRUMLEY, R. H. COX, J. P. SPRINGER, R. F. ARRENDALE, R. J. COLE & P. D. COLE: Ophiobolins G and H: New fungal metabolites from a novel source, *Aspergillus ustus*. J. Agric. Food Chem. 32: 778~782, 1984
- BALLIO, A.; M. BRUFANI, C. G. CASINOVI, S. CERRINI, W. FEDELI, R. PELLICCIARI, B. SANTURBANO & A. VACIAGO: The structure of fucisoccin A. Experientia 24: 631~635, 1968
- 4) ISSHIKI, K.; T. TAMAMURA, Y. TAKAHASHI, T. SAWA, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: The structure of a new antibiotic, terpentecin. J. Antibiotics 38: 1819~1821, 1985